新皇冠体育app

Encyclopedia of Earthquake Engineering

Living Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Ivan Siu-Kui Au

Steel Posttensioned Connections with Web Hourglass Pins: Toward Earthquake Resilient Steel Structures

  • George VasdravellisEmail author
  • Theodore L. Karavasilis
Living reference work entry
DOI: http://doi.org/10.1007/978-3-642-36197-5_318-1
  • 2k Downloads

Synonyms

Introduction

Conventional steel moment-resisting frames (MRFs) are currently designed to form a global plastic mechanism under the design basis earthquake (DBE) by developing plastic hinges at the ends of the beams and the bases of the columns. This design methodology offers many advantages, including collapse prevention and initial economy; however, plastic hinges in structural members involve difficulty to inspect and repair damage and local buckling as well as residual drifts. The socioeconomic losses associated with damage and residual drifts are repair costs, increased downtime, and possibly demolition due to the complications associated with large residual drifts (McCormick et al. 2008).

A challenge of modern earthquake engineering is the development, standardization, and practical implementation of resilient minimal-damage structures with the inherent potential to...

This is a preview of subscription content, log in to check access.

References

  1. Charney FA, Downs WM (2004) Connections in steel structures V. ESSC/AISC workshop, Amsterdam, 3–4 June
  2. Chou CC, Lai YJ (2009) Post-tensioned self-centering moment connections with beam bottom flange energy dissipators. J Constr Steel Res 65(10–11):1931–1941
  3. Chou CC, Chen JH, Chen YC, Tsai KC (2006) Evaluating performance of post-tensioned steel connections with strands and reduced flange plates. Earthq Eng Struct Dyn 35(9):1167–1185
  4. Chou C, Tsai K, Yang W (2009) Self-centering steel connections with steel bars and a discontinuous composite slab. Earthq Eng Struct Dyn 38:403–422. doi:10.1002/eqe.
  5. Christopoulos C, Filiatrault A, Uang CM, Folz B (2002) Posttensioned energy dissipating connections for moment-resisting steel frames. J Struct Eng 128(9):1111–1120
  6. Dassault Systems (2010) Abaqus theory manual. Dassault Systèmes Simulia, Providence
  7. Dimopoulos AI, Karavasilis TL, Vasdravellis G, Uy B (2013) Seismic design, modelling and assessment of self-centering steel frames using post-tensioned connections with web hourglass shape pins. Bull Earthq Eng 11(5):1797–1816. doi:10.1007/s10518-013-9437-4
  8. EC3 Eurocode 3 (2003) Design of steel structures
  9. EC8 Eurocode 8 (2004) Design of structures for earthquake resistance
  10. Garlock M, Ricles JM, Sause R (2005) Experimental studies of full-scale posttensioned steel connections. J Struct Eng 131(3):438–448
  11. Garlock M, Sause R, Ricles JM (2007) Behavior and design of posttensioned steel frame systems. J Struct Eng 133(3):389–399
  12. Karavasilis TL, Ricles JM, Sause R, Chen C (2011) Experimental evaluation of the seismic performance of steel MRFs with compressed elastomer dampers using large-scale real-time hybrid simulation. Eng Struct 33(6):1859–1869
  13. Karavasilis TL, Kerawala S, Hale E (2012) Model for hysteretic behaviour of steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel frames. J Constr Steel Res 70:358–367
  14. Kim HJ, Christopoulos C (2008a) Friction damped posttensioned self-centering steel moment-resisting frames. J Struct Eng 134(11):1768–1779
  15. Kim HJ, Christopoulos C (2008b) Seismic design procedure and seismic response of post-tensioned self-centering steel frames. Earthq Eng Struct Dyn 38(3):355–376
  16. Kim H, Christopoulos C (2009) Numerical models and ductile ultimate deformation response of post-tensioned self-centering moment connections. Earthq Eng Struct Dyn 38:1–21. doi:10.1002/eqe.
  17. Kobori T, Miura Y, Fukuzawa E, Yamada T, Arita T, Takenaka Y, Miyagawa N, Tanaka N, Fukumoto T (1992) Development and application of hysteresis steel dampers. In: Earthquake engineering, tenth world conference. Balkema, Rotterdam
  18. Mazzoni S, McKenna F, Scott M, Fenves G (2006) Open system for earthquake engineering simulation (OpenSees). User Command Language Manual, Pacific Earthquake Engineering Research Center, University of California, Berkeley
  19. Mc Cormick J, Aburano H, Ikenaga M, Nakashima M (2008) Permissible residual deformation levels for building structures considering both safety and human elements. 14th WCEE, Beijing
  20. Ricles J, Sause R, Garlock M, Zhao C (2001) Posttensioned seismic-resistant connections for steel frames. J Struct Eng 127(2):113–121
  21. Ricles J, Sause R, Peng SW, Lu LW (2002) Experimental evaluation of earthquake resistant posttensioned steel connections. J Struct Eng 128(7):850–859
  22. Rojas P, Ricles JM, Sause R (2004) Seismic performance of post-tensioned steel moment resisting frames with friction devices. J Struct Eng 131(4):529–540
  23. Somerville P (1997) Development of ground motion time histories for phase 2 of the FEMA/SAC steel project, Report No. SAC/DB-97/04, Sacramento
  24. Tsai KC, Chou CC, Lin CL, Chen PC, Jhang SJ (2008) Seismic self-centering steel beam-to-column moment connections using bolted friction devices. Earthq Eng Struct Dyn 37:627–645
  25. Vasdravellis G, Karavasilis TL, Uy B (2013a) Large-scale experimental validation of steel post-tensioned connections with web hourglass pins. J Struct Eng 139(6):1033–1042
  26. Vasdravellis G, Karavasilis TL, Uy B (2013b) Finite element models and cyclic behavior of self-centering steel post-tensioned connections with web hourglass pins. Eng Struct 52:1–16
  27. Vasdravellis G, Karavasilis TL, Uy B (2014) Design rules, experimental evaluation and fracture models for high-strength and stainless-steel hourglass shape energy dissipation devices. J Struct Eng (ASCE). doi:10.1061/(ASCE)ST.1943-541X.00010
  28. Whittle J, Williams MS, Karavasilis TL, Blakeborough T (2012) A comparison of viscous damper placement methods for improving seismic building design. J Earthq Eng 16:540–560
  29. Wolski M, Ricles JM, Sause R (2009) Experimental study of a self-centering beam-column connection with bottom flange friction device. J Struct Eng 135(5):479–488

Copyright information

© Springer-Verlag Berlin Heidelberg 2021

Authors and Affiliations

  1. 1.Institute for Infrastructure and EnvironmentHeriot-Watt UniversityEdinburghUK
  2. 2.School of EngineeringUniversity of WarwickCoventryUK